

Paper Information

Paper number	#1445
Paper title	Systematic literature review for the application of BESS as grid-forming: current issues, challenges, and future trends
Study Committee	SC C6 – Active distribution systems and distributed energy resources
Preferential subject	PS2: Technologies supporting the power grid for energy transition to carbon neutral energy production
Authors	Rafael Fernandes ¹ , Ivan Silva ¹ , Eduardo Sodré ² , Heitor Nunes ²
Affiliations (optional)	USP-EESC ¹ , UPE-POLI ²
Country	Brazil
Email address	rafaelfernandes@usp.br

Summary

Battery Energy Storage Systems (BESS) play a crucial role in frequency control for renewable energy projects that utilize solar and wind power plants. Due to their rapid response time, on the order of milliseconds, batteries assist in inertial response, mitigating frequency drops in the power grid. Larger battery systems, capable of delivering power for tens of minutes, support primary and secondary frequency regulation. To ensure optimal energy contribution at the Point of Common Coupling (PCC), it is crucial to accurately estimate battery efficiency, as well as State of Health (SOH) and State of Charge (SOC), particularly during periods of maximum discharge. Additionally, monitoring the Depth of Discharge (DoDmax) helps improve long-term reliability. With megawatt-scale batteries, BESS can support the Grid-Forming (GFM) concept, providing synthetic inertia through active power injection and voltage regulation via decoupled active and reactive power control techniques. The operational lifespan of batteries significantly affects their power delivery capacity. Initially, a battery's SOH is approximately 100% of its nominal capacity. Still, after a long period of operation, for example, 17 years, it can degrade to 65% or more, impacting energy availability at the PCC. The global Round-Trip Efficiency (RTE), which combines charge and discharge cycle efficiency, starts at approximately 85% of nominal capacity in the first year but drops to around 50% in later operational stages. Such degradation must be precisely modeled to optimize power system performance. Advanced machine learning techniques, including reinforcement learning, supervised neural networks with Long Short-Term Memory (LSTM) and Kalman Filter estimators, for example, are increasingly used to predict battery duty cycles [1]. These predictive models enable the forecasting of both active and reactive power, ensuring improved grid stability and optimized resource utilization. The primary focus of this paper is to analyze the leading research from the past decade, identifying the main constraints and challenges associated with implementing grid-forming batteries in the power grid.

Keywords

BESS, Grid Forming, Distributed Energy Resource, Predictive Models

Central Office 21, rue d'Artois, 75008 Paris – France

1 Introduction

Due to the high penetration of Inverted-Based Resources (IBRs) in electrical networks over recent years, the conventional treatment of these sources as constant current sources has exposed vulnerabilities in control systems, particularly in terms of frequency support, voltage regulation, and inertia emulation. These challenges are even more pronounced in weak grids, where the lack of system strength exacerbates stability concerns. As the share of IBRs expands, new control strategies are being developed to mitigate these issues. However, relying solely on Grid-Following (GFL) inverters presents a fundamental limitation, as these inverters require an external voltage reference to synchronize with the grid. In scenarios where a significant portion of the generation is inverter-based, the absence of a voltage-forming source raises concerns about the system's ability to maintain stable and reliable operation. To address this, adopting GFM inverters has been increasingly recognized as a necessary evolution in power system control. Unlike GFL inverters, GFM inverters establish and regulate voltage and frequency autonomously, providing the essential references for proper network operation. This capability enables enhanced grid resilience, ensuring that even in high-renewable penetration environments, the system can maintain stable operation without relying solely on synchronous generation. The GFM inverter technology has become a pivotal topic in the energy transition, particularly in BESS application. Despite its commercial availability, the adoption of GFM remains limited in some countries [2] due to gaps in its deployment pathway. A key challenge is the lack of comprehensive studies and models that demonstrate its value and reliability in large-scale, considering interconnected power systems. According to [2], a study team evaluated GFM models from multiple original equipment manufacturers to address this issue. being tested against NERC-GFM functional specifications and test procedures [3]. The GFM BESS models were integrated into the American Transmission Company (ATC) network in weak and strong grid conditions. The research highlighted the importance of implementing GFM controls in BESS to enhance grid reliability at a low cost. Without clear incentives or regulations, most batteries in interconnection queues are likely to employ conventional gridfollowing controls, necessitating the installation of additional stabilizing equipment in areas with high renewable energy penetration. This paper is structured as follows: Session 2 presents some potential uses of GFM and the base-case simulation. Session 3 presents the systematic bibliography research, and Session 4 concludes the paper.

2 Grid Forming Concept Review and Base-Case Simulation

According to [4], GFM controls are designed to maintain a constant internal voltage phasor within the sub-transient to transient timeframe. This characteristic enables GFM with IBRs to immediately respond to variations in the external grid, ensuring stability under challenging network conditions. To achieve seamless integration, the voltage phasor must be synchronized with other grid components while regulating active and reactive power to support system operation effectively. GFM and GFL controls exhibit varied implementations depending on the specific control algorithms and operational objectives. However, all types of IBR controls are subject to several key constraints, including electrical limitations (voltage, current, and energy constraints), mechanical constraints, particularly in Wind Turbine Generators (WTGs), and external power system limitations, such as network strength and inertia conditions. GFM inverters must comply with many of the same performance requirements as GFL unless specific exemptions are explicitly stated. This means that GFM inverters are expected to adhere to standard operational criteria, ensuring grid reliability and stability while providing voltage and

frequency support in modern power systems. Still in [4], the key functional capabilities of GFM inverters are summarized as: 1) Weak grid operation – Ensuring stable performance under low Short Circuit Ratio (SCR) conditions, improving system robustness in weak grids, 2) Damping of voltage and frequency oscillations, 3) Resisting voltage phase angle change and frequency change or limiting Rate of Change of Frequency (RoCoF) as a supplement inertial response of synchronous machines, 4) Fast fault current injection, 5) Mitigation of sub-synchronous control interactions, 6) Support of islanded operation, and 7) Black start.

2.1 Benchmarking Case-Study: GFM + BESS + PV

According to [5], the benchmarking system adopted for the simulation evaluates the GFM's capabilities to respond adequately when a contingency occurs in a hybrid photovoltaic system with one BESS. The model is modeled to react according to the requirements of the IEEE 2800 standard [6]. This system represents a 100 MWp PV Plant with a 60 MWh BESS. A series of parameters is used to define the operation of the GFM, including the emulation of direct and quadrature axis reactance, inertia, leakage reactance, and others. These parameters also incorporate data from the substation collection system and the external network, such as short-circuit power and short-circuit ratio. The BESS system is modeled with two modes of operation: Virtual Synchronous Machine (VSM) and Drop-Controller. The controller Dispatchable Virtual Synchronous Machine (DVSM) Control was not implemented in this benchmark case study.

Figure 1 - a) Benchmarking Case Study. Source [5].

To demonstrate the response of the BESS system operating as a BESS GFM-VSM control, a 45% variation in the load connected to the 4.16 kV busbar was applied. The network is considered a weak grid, with SCR of only 0.43. In Figure 2-a, the BESS system is configured to operate in Grid Following mode, and the voltage and frequency responses at the PCC are observed. Figure 2-b presents the variable response with the BESS system functioning as a GFM. In this case, where SCR < 1, considered a weak source, the BESS GFM presented an adequate response, and the system offered a stable point of operation in the post-fault event. Legacy grid-following systems can be migrated, depending on the construction characteristics of each manufacturer, to grid-forming systems through firmware updates, for example. It is then expected that such systems will contribute to the transient and dynamic stability of the power grid, as well as enhanced controllability, by emulating the behavior of a synchronous machine.

Figure 2 - a) Simulated Event - BESS as Grid Following, b) Simulated Event - BESS as Grid Forming [5].

1 Systematic Literature Review

Bibliography research using the Web of Science database and VOSviewer tool, considering periodicals published in the last ten years in leading journals and important indexed conferences, revealed 46 papers found using the string "Grid Forming" AND "BESS", as presented in Figure 3. Figure 4-a) shows the coupling with the papers' keywords, and Figure 4b) illustrates the citation connections among authors. Tables 1 to 9 present the clusters identified according to their topologies, characteristics, advantages, and constraints. According to Figure 4-b, the highest number of citations came from Zuo et al. (2021) [45], in cluster 7, with 54 citations; Fusero et al. (2019) [29], in cluster 4, with 25 citations; Zhao et al. (2022) [19], in cluster 2, with 36 citations; Moon et al. (2019) [37], in cluster 6, with 15 citations; Shahparasti et al. (2022) [48], in cluster 8, with 11 citations; Ali et al. (2023) [41], in cluster 6, with 10 citations; and Abadi et al. (2023) [40], in cluster 6, with 8 citations. The bibliographic research also identified Cluster 09, which comprised 5 papers [49-53] that were not connected to the other 8 clusters, either by keyword coupling or author affiliation. The results revealed that all of them primarily focused on GFM microgrid applications. By grouping the clusters, it was possible to identify related topics, incorporating contributions from previously published works, and highlighting the various applications and benefits that grid-forming systems will bring to both distributed generation and transmission systems. The constraints presented challenges that needed to be overcome so that these solutions could gain a broader scale of application in both short- and medium-term scenarios.

Figure 3 - Number of Publications over the last 10 Years

Figure 4 – a) Coupling via Keywords, b) Coupling via Authors

The number of publications has trended over the years, highlighting the interest and significance of topics related to GFM applications. The tables below present a resumed analysis of all 46 papers. Table 09 displays the papers not associated with the other 8 clusters.

Paper	Method	Topology	Characteristics	Advantages	Constraints
Coordinated Control of	Coordinated control	Isolated systems with	Robust control for	Flexibility and	Complexity in scenarios
Battery Energy Storage	with dump load	BESS and controllable	stability and energy	efficient control of	with high load variability
and a Dump Load [7]		loads	discard management	stored energy	
Development of	MATLAB/Simulink	Solar PV-battery	GFL inverters use PLL	GFM inverters	GFM control requires
GFM/GFL Inverter	simulations and	microgrid integrating	and GFM Inverters	ennance grid	complex algorithms and
Control in Microgrid	experimental validation	grid-forming (GFM) and	With VSM control for	resilience, improve	nardware support, with
Network, Ensuring Grid	using a 1 kw grid-	grid-lottowing (GFL)	voltage and frequency	weak grid operation,	iurther targe-scate
Bosponso [9]	connected system	Inverters	regulation	frequency support	widespread deployment
Frequency Control	Fraguancy control with	Crid forming and grid	Canability to operate	Stability in low	Dependence on proper
using Grid-forming and	grid-forming and grid-	following inverters	in islanded or grid-	inertia networks	configurations for
Grid-following BESS [9]	following inverters	operating in parallel	connected mode	mertia networks	narallel modes
Erequency Support	Frequency support with	Multiple BESS	High resilience and	High efficiency in	Need for precise
from Multiple Litility-	multiple utility-scale	integrated into utility	inertia sunnort at a	frequency support	synchronization
Scale Grid-Forming	BESS	networks	large scale	inequeine) support	between BESS
BESS [10]					
Grid-Forming Inverter	Grid-Forming inverters	Grids with high	Grid stabilization	Improvement of	Requires careful
and Applications to	to enhance system	penetration of inverter-	under low-inertia	system strength with	parameterization to
Support System	strength	based resources	conditions	advanced control	avoid instabilities
Strength [11]					
Inertia Evaluations on	Inertia evaluations on	Photovoltaic systems	Configurable virtual	Mimics behaviors of	Challenges in practical
Grid-Forming Inverters	grid-forming inverters	with virtual	inertia control	physical	implementation due to
with Virtual	with VSG control	synchronous control		synchronous	complexity
Synchronous Generator				generators	
Control [12]					
Oscillation	Oscillation	Distributed control	Reduction of	Effective damping of	Requires accurate
Identification and	identification and	based on subspace	oscillations and	critical oscillations	models for effective
Frequency Damping	frequency damping	identification	improved dynamic		identification
Controller Design [13]	Controller design	DV botton (ovotomo	Control of	Improved legal	Dotontially high
Power Fluctuation		PV-Ddllery Systems	fluctuations in local	stability and	Polentially night
Battery GEM [1/1]	Batton GEM systems	local stability	PV_batteny gride	reduction of	implementation costs
	Dattery OF Proysterns	tocat stability	r v-battery grius	fluctuations	
Regional Power System	Black starts of the grid	Run-of-river	Coordinated use of	Enhanced stability	Dependence on specific
Black Start with Run-of-	with run-of-river	hydropower plant and	BESS to stabilize	during black start	hardware support
River Hydropower and	hydropower and BESS	BESS	frequency and voltage		
BESS [15]					
The Use of	Synchronverters for	Low-inertia grids with	Simulation of virtual	High precision in	Need for filtering
Synchronverters for	fast frequency	BESS and sync	synchronous	frequency and	harmonics due to power
Fast Frequency	response and	converters	generators with fast	voltage regulation	electronics
Response [16]	automatic voltage		response		
	regulation				

Table 1 – Cluster 01 – 10 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
A universal model for power converters of BESS utilizing impedance-shaping concepts [17]	Impedance-shaping for enhanced converter dynamics	Generalized impedance model for power converters	Flexible control strategy applicable to various BESS setups	Improved dynamic performance and compatibility	Requires detailed impedance parameterization
BESS Reserve-Based Frequency Support During Emergency in Islanded Residential Microgrids [18]	Reserve-based frequency support for islanded microgrids	Islanded residential microgrid with BESS	Focus on emergency scenarios and frequency stability	Ensures frequency stability in emergency conditions	Relies heavily on accurate reserve estimations
Control Interaction Modeling and Analysis of Grid-Forming BESS for Offshore Wind Power Plants [19]	Interaction modeling and analysis of grid- forming controls	Offshore wind power plant with grid-forming BESS	Detailed modeling for control interactions	Enhanced understanding of control interactions	Complexity in implementation and validation
Power Management Analysis in PV-BESS Islanded AC Microgrid [20]	Droop-based primary control for PV and BESS	Islanded AC microgrid with PV and BESS	PV operates in grid- feeding mode	Stability under diverse operational scenarios	Challenges in precise reactive power-sharing
Power Management and Economic Load Dispatch in Hybrid PV- Battery-Diesel [21]	Economic load dispatch and power management for hybrid systems	Hybrid PV-BESS-Diesel standalone AC system	Incorporates DC synchronization and economic dispatch	Efficient and reliable system operation under load variations	Dependence on real- time data for economic dispatch

Table 2 - Cluster 02 - 5 Papers

Table 3 - Cluster 03 - 5 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
Promises and Challenges of Grid- Forming [22]	Performance-based requirements and control optimization	Generalized grid- forming strategies for various systems	Focus on optimizing GFM performance for system needs	Allows flexibility and cost-efficiency in GFM designs	Intellectual property constraints on design sharing
Control Principles for Island Operation and Black Start by Offshore Wind Farms [23]	Integration of GFM converters with BESS for black start	OWF with GFL turbines and centralized GFM- BESS	Hybrid operation of grid-forming and grid- following systems	Achieves black start capability with renewable integration	Challenges in the simultaneous control of multiple components
Offshore Wind Farm Black Start with Grid- Forming Control [24]	Black-start of OWF using hybrid GFM-BESS and electrolyser units	Islanded offshore wind farm with GFM-BESS and electrolyzer	Use of electrolyzes to support BESS during startup	Enhances efficiency and integrates green hydrogen production	Requires advanced modeling and coordination of electrolyzers
Sub-Synchronous Damping by Battery Storage System in Grid- Forming Control Mode [25]	Grid-forming control for damping sub- synchronous oscillations	Wind farms connected to weak grids with GFM-BESS at PCC	Impedance-based analysis for SSO mitigation	Improved grid stability with effective SSO damping	The trade-off between damping effectiveness and costs
Subsynchronous Damping by Battery Storage System in Grid- Forming Control [26]	Decoupling damping and droop coefficients for SSO damping	External and internal BESS integration in WT systems	Reduced power requirements with decoupled control	Maintains SSO damping while reducing battery sizing	Complexity in control design and implementation

Table 4 - Cluster 04 - 5 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
A Grid-Forming Multi-	Unified Virtual	Multi-port AC-DC	Seamless transition	Enhance fault	Requires advanced
Port Converter using	Oscillator Control	hybrid microgrid	between islanded and	tolerance and robust	control hardware and
Unified Virtual	(uVOC) for multi-port	converter	grid-tied modes, fault	synchronization	complex configuration
Oscillator Control [27]	converters		ride-through		
Influence of Load	Dynamic load modeling	Isolated power	Focus on induction	Improved load	Relies on accurate load
Dynamics on	for BESS sizing in	systems with 100%	motor (IM) dynamics	recovery and	modeling for adequate
Converter-Dominated	converter-dominated	converter-based	and load recovery	reduced oversizing of	BESS sizing
[28]	systems	generation	post-faults	BESS	
A Comprehensive	Virtual Generator Mode	Microgrid with inverter-	Combines	Scalable for large	Requires careful tuning
Inverter-BESS Primary	(VGM) and Grid	based BESS for both	frequency/voltage	systems with	for parallel operations
Control for AC	Support Mode (GSM)	grid-forming and grid-	regulation with fast	improved frequency	
Microgrids [29]		support operations	secondary control	and voltage stability	
Enhancing Low-Inertia	Integration of hybrid	Hybrid storage systems	Provides virtual inertia	Efficient, cost-	Dependency on hybrid
Power Systems with	energy storage systems	with battery and ultra-	and supports grid	effective solution for	technology increases
Grid-Forming-Based	with grid-forming	capacitor in low-inertia	stability with hybrid	grid stability in weak	system complexity
Hybrid Storage [30]	converters	systems	storage	grids	
Grid-Forming Inverters	Dynamic stability	Islanded power	Ensures stability	Optimizes BESS	High dependency on
Sizing in Islanded	analysis for grid-	systems with mixed	under N-1	capacity for transient	transient modeling
Power Systems: A	forming BESS sizing	renewable generation	contingencies	stability	accuracy
Stability Perspective					
[31]					

Paper	Method	Topology	Characteristics	Advantages	Constraints
Replicated real-world	Enhanced grid stability	Requires	Replicated real-world	Enhanced grid	Requires
load-shedding events	and reduced load-	standardization for	load-shedding events	stability and reduced	standardization for GFM
for performance	shedding frequency	GEM deployment in	for performance	load-shedding	deployment in bulk
validation [32]	onouting noquonoy	bulk systems	validation	frequency	systems
Direct conversion via	Efficient, eco-friendly	Challenges in	Direct conversion via	Efficient, eco-friendly	Challenges in
PMLG, energy	energy conversion,	synchronizing WEC and	PMLG, energy	energy conversion,	synchronizing WEC and
smoothing with DC-link	optimized power	BESS control for	smoothing with DC-	optimized power	BESS control for
BESS [33]	smoothing	dynamic conditions	link BESS	smoothing	dynamic conditions
Review of the droop,	Provides a holistic	Lack of real-world	Review of droop, VSG,	Provides a holistic	Lack of real-world
VSG, and other	overview of GFM	implementation details	and other advanced	overview of GFM	implementation details
advanced GFM control	technologies and their	in some reviewed	GFM control methods	technologies and	in some reviewed
methods [34]	challenges	studies		their challenges	studies
Dynamic adjustment of	Ensures grid	High dependency on	Dynamic adjustment	Ensures grid	High dependency on
power and ride-through	compliance and fault	accurate system	of power and ride-	compliance and fault	accurate system
capability for weak	tolerance in weak grid	modeling and grid	through capability for	tolerance in weak	modeling and grid codes
grids [35]	conditions	codes	weak grids	grid conditions	
Multi-objective	Improves voltage	It relies on advanced	Multi-objective	Improves voltage	It relies on advanced
optimization	stability and utilizes	optimization	optimization	stability and utilizes	optimization algorithms
incorporating BESS	BESS more effectively	algorithms and	incorporating BESS	BESS more	and detailed modeling
reactive power limits		detailed modeling	reactive power limits	effectively	
[36]					

Table 5 - Cluster 05 - 5 Papers

Table 6 - Cluster 06 - 5 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
Autonomous Active	Proportional and droop	Isolated microgrid with	Uses BESS frequency	Ensures real-time	Limited by high
Power Management in	control for autonomous	grid-forming BESS and	signal for power	power balance with	variability in RES outputs
Isolated Microgrid	power balance	RES integration	sharing and	minimal	and SOC dependency
Based on Proportional			autonomous control	communication	
and Droop Control [37]				requirements	
A Master-Slave Model	Finite Control Set	Microgrid with NPC	Supports fast	Handles parametric	Complex tuning and
Predictive Control	Model Predictive	inverters, BESS, and PV	dynamic response,	variations effectively,	computational
Approach for	Control (FCS-MPC) in	panels in grid-	multiobjective	supports	requirements for MPC
Microgrids [38]	master-slave	connected and	control, and	multivariable control	
	configuration	islanded modes	robustness to		
			uncertainties		
Decentralized Active	Frequency bus-	Isolated microgrid with	Minimizes	Autonomous	Challenging
Power Control Strategy	signaling combined	diesel generators,	frequency/voltage	operation with	implementation in
for Real-Time Power	with droop control for	BESS, and renewable	deviations during	improved reliability in	systems with high load
Balance in an Isolated	decentralized active	energy sources	disturbances	case of generator	variability
Microgrid [39]	power control			trips	
Effective Utilization of	Grid-forming battery-	Islanded DC multi-	Improves voltage	Extends battery life	Dependency on
Grid-Forming Cloud	supercapacitor hybrid	nano-grids (MNGs)	stability and reduces	and optimizes energy	advanced controllers
Hybrid Energy Storage	systems for transient	with centralized hybrid	battery stress via	storage capacity	and the initial cost of
Systems [40]	voltage stabilization	storage	hybrid storage		hybrid systems
Model Predictive	Energy management	DC microgrid with	Dynamic control of	Efficient energy	Requires precise tuning
Control of Consensus-	system using FCS-MPC	distributed renewable	GFM and GFL	management with	of MPC cost functions
Based Energy System	for GFM and GFE	energy sources and	converters	reduced overshoot	for optimal performance
[41]	modes	BESS		and settling time	

Table 7 - Cluster 07 – 4 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
Local Effects of GFM Providing Frequency Regulation [42]	Experimental analysis using PMUs for frequency regulation	720 kVA/500 kWh BESS interfaced with a 20 kV distribution grid	Introduces new local metrics for GFM and GFL comparisons	Confirms GFM's higher efficacy in low-inertia grids	Focuses on local grid impacts rather than bulk system effects
Real-Time Simulations for Testing of LV Microgrid with MMC- DSTATCOM [43]	Real-time testing of MMC-DSTATCOM with renewable energy and BESS	LV microgrid with MMC-DSTATCOM, RES, and lithium-ion BESS	Tests grid-forming and grid-following modes under real-time conditions	Enables realistic testing of microgrid controls with low overruns	Real-time setups are computationally complex and expensive
Optimal Grid-Forming Control of BESS Providing Multiple Services [44]	Three-stage control: robust optimization, MPC, and real-time adjustments	BESS with GFM control connected to a 20 kV distribution feeder	Integrates feeder dispatch ability, FCR, and voltage regulation	Provides robust, adaptable control under uncertainties	High computational resources are needed for real-time adjustments
Performance Assessment of GFM and GFL BESS on Frequency Regulation [45]	Dynamic simulations comparing GFM and GFL modes in low- inertia grids	IEEE 39-bus low-inertia system with converter- interfaced renewables	Detailed dynamic modeling for comparative performance metrics	Demonstrates superior frequency control of GFM over GFL	Limited to simulation; lacks practical implementation results

Paper	Method	Topology	Characteristics	Advantages	Constraints
Energization of	BESS operating in the	Islanded medium	RTDS-based	Reduces mechanical	Requires careful
Transformers in	grid-forming mode for	voltage microgrid with	validation eliminates	stress on	parameter tuning for
Medium Voltage Island	soft-start transformer	PV, BESS, and	inrush currents and	transformers; robust	BESS inverter control
Microgrids [46]	energization	synchronous	voltage sags	control under	
		generators		variable conditions	
Integrating Black Start	GFM batteries	Offshore wind farm	Three-stage	Improves grid	Dependent on OWF
Capabilities into	combined with OWFs	with integrated GFM	restoration: power	resilience; provides	capacity and wind
Offshore Wind Farms	for staged black start	battery energy storage	island formation, grid	additional services	availability; cost of BESS
[47]	procedure	systems	energization,	(e.g., inertia, reactive	integration
			resynchronization	power)	
Inrush Current	Droop and voltage-	Medium voltage	Proposed methods	Simple	Performance may vary
Management During	current control loops to	microgrid with 1 MVA	independent of	implementation;	under complex
Medium Voltage	limit transformer inrush	BESS and multi-	transformer	maintains voltage	transformer saturation
Microgrid Black Start	currents.	transformer	parameters or CB	quality and current	scenarios
[48]		configuration	timing	limite	

Table 8 - Cluster 08 – 3 Papers

Table 9 - Cluster 09 – 5 Papers

Paper	Method	Topology	Characteristics	Advantages	Constraints
Grid Forming BESS for a	Per-phase dq control	Three-phase mini-grid	Provides balanced	It improves power	Complex control
Highly Unbalanced	with Fictive Axis	with diesel genset,	voltage under highly	quality, reduces	requirements in real-
Hybrid Mini-Grid [49]	Emulation (FAE)	BESS, and RES	unbalanced loads	genset dependence	world scenario
A BESS Control System	Multi-functional control	Diesel-hybrid mini-grid	Compensates	Reduces fuel	It does not fully address
for Reducing Fuel	system with genset	with high renewable	reactive power,	consumption and	frequency variations and
Consumption in Diesel-	support and grid-	penetration	optimizes diesel	maintenance costs	variable renewable
Hybrid [50]	forming modes		genset operation		
A Technical and	MATLAB Simulink-	Campus microgrid with	Hybrid energy system	Ensures energy	Economic feasibility
Economic Feasibility	based modeling of grid-	PV, BESS, CHP, and	with real-time	resilience,	depends on policy
Study of Campus	tied and islanded	utility grid	analysis of grid	integrating	incentives and funding
Microgrid [51]	modes		performance	renewables	availability
Adaptation of	Modification of Texas	Single-bus topology	SCADA for real-time	Enhances energy	Additional hardware
Microinverter for BESS	Instruments	integrating BESS and	control, bidirectional	efficiency, enables	modifications, increased
in Microgrids [52]	microinverter for	PV through DC bus	energy transfer	DC-AC grid	system complexity
	bidirectional power			interaction,	
Interfacing of Grid-	Hybrid Interface	Microgrid with BESS,	Stability and	High-fidelity real-	Requires precise
Forming Inverter for	Algorithm with Partial	PV, and utility grid	protection schemes	time simulation	calibration; sensitive to
Microgrid Islanding	Circuit Duplication	connection for PHIL	short-circuit	evaluates system	inaccuracies in interface
Studies [53]	(PCD)	testing	conditions	dynamics	impedance

2 Conclusion

This paper explored the use of BESS systems with grid-forming technology, highlighting their advantages over grid-following systems through a benchmarking case study. Challenges arise during project implementation, as BESS systems are modeled as synchronous machines, which exhibit characteristics such as inertia behavior and short-circuit conditions. Verifying expected response times in line with different grid codes and network compliances is vital; therefore, understanding power and control electronics techniques, which influence the dynamic and transient behavior of electrical networks, is essential. A systematic literature review was conducted using search tools and clustering analysis, with a focus on bibliographic coupling and author citations. This review examined 46 technical papers published in indexed journals over the past decade. Most publications center on transmission systems, while few address microgrid systems. However, integrating BESS with GFM systems into distribution networks within distributed energy resources is expected to lead to significant developments. Consequently, this work represents a notable advancement in research and real-world applications worldwide, reflecting the rising trend of grid-forming systems in recent years. As progress continues to accelerate, it is increasingly crucial to foster collaboration among academia, manufacturers, industry stakeholders, and research centers to enhance knowledge transfer, particularly about the control strategies adopted by different manufacturers for emulating synchronous machines, as well as the associated response times.

Bibliography

[1] Grewal, Mohinder S., and Angus P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. New York: Wiley Intersci., 2001.

[2] Ndreko M, Rüberg S, Winter W. "Grid-forming control for stable power systems with up to 100% power electronicinterfaced generation: A case study on the Great Britain test system." IET Renewable Power Generation, vol. 14, no. 8, pp. 1268-1281, 2020.

[3] North American Electric Reliability Corporation (NERC), Grid-Forming Technology: Bulk Power System Reliability Considerations, December 2021. Available: https://www.nerc.com.

[4] Matevosyan, Grid-Forming Requirements: ESIG Webinar 2024, Energy Systems Integration Group (ESIG), Oct. 16, 2024. Available: https://www.esig.energy.

[5] MathWorks Simscape Team (2025). Renewable Energy Integration Design with Simscape (https://github.com/simscape/Renewable-Energy-Integration-Simscape), GitHub. Retrieved February 13, 2025.

[6] IEEE Std 2800-2022, IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems, 2022. doi: 10.1109/IEEESTD.2022.9744043.

[7] R. Sebastián and J. Quesada, "Coordinated Control of a Battery Energy Storage and a Dump Load in an Autonomous Wind Power System," 2020 IEEE, doi: 10.1109/xxxx.2020.xxxxx.

[8] V. V. Babu, J. P. Roselyn, C. Nithya, and P. Sundaravadivel, "Development of Grid-Forming and Grid-Following Inverter Control in Microgrid Network Ensuring Grid Stability and Frequency Response," Electronics, vol. 13, no. 1958, pp. 1–20, May 2024, doi: 10.3390/electronics13101958.

[9] M. R. Amin et al., "Frequency Control Using Grid-Forming and Grid-Following Battery Energy Storage Systems," 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), pp. 1-6, 2021, doi: 10.1109/RTUCON53541.2021.9711699.

[10] I. Alcaide-Godinez and F. Bai, "Frequency Support from Multiple Utility-Scale Grid-Forming Battery Energy Storage Systems," IEEE IAS Industrial and Commercial Power System Asia, pp. 1-8, 2022, doi: 10.1109/IASICPSA.2022.

[11] Y. Zhou, et al., "Grid-forming inverter and its applications to support system strength – A case study," IET Generation, Transmission & Distribution, vol. 17, pp. 391–398, 2022, doi: 10.1049/gtd2.12566.

[12] Q. Lin et al., "Inertia Evaluations on Grid-Forming Inverters with Virtual Synchronous Generator Control Applied to Photovoltaic Power Systems," IEEE Conference on Renewable Energy and Grid Stability, pp. 1-7, 2023.

[13] F. Al Hasnain et al., "Oscillation Identification and Frequency Damping Controller Design for Battery Energy Storage System Using Subspace Identification," IEEE Transactions on Industry Applications, vol. 60, no. 3, pp. 4796-4809, June 2024,
[14] K. Yin et al., "Power Fluctuation Suppression in Energy Storage for PV-Battery GFM Systems," IEEE 15th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2024, doi: 10.1109/PEDG2024.

[15] W. Yan et al., "Regional Power System Black Start with Run-of-River Hydropower Plant and Battery Energy Storage," Journal of Modern Power Systems and Clean Energy, vol. 12, no. 5, pp. 1-12, Sept. 2024, doi: 10.35833/MPCE.2023.000730. [16] J. B. B. Hansen et al., "The Use of Synchronverters for Fast Frequency Response and Automatic Voltage Regulation in Low Inertia Islanded Power Networks," IEEE 56th International Universities Power Engineering Conference (UPEC), 2021.

[17] Y. Asadi, M. Eskandari, M. Mansouri, M. H. Moradi, and A. V. Savkin, "A universal model for power converters of battery energy storage systems utilizing the impedance-shaping concepts," International Journal of Electrical Power and Energy Systems, vol. 149, 2023, doi: 10.1016/j.ijepes.2023.109055.

[18] S. Som, et al., "BESS Reserve-Based Frequency Support During Emergency in Islanded Residential Microgrids," IEEE Transactions on Sustainable Energy, vol. 14, no. 3, pp. 1702-1713, July 2023, doi: 10.1109/TSTE.2023.3244002.

[19] F. Zhao, X. Wang, Z. Zhou, L. Harnefors, J. R. Svensson, Ł. H. Kocewiak, and M. P. S. Gryning, "Control Interaction Modeling and Analysis of Grid-Forming Battery Energy Storage System for Offshore Wind Power Plant," IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 497-510, Jan. 2022, doi: 10.1109/TPWRS.2021.3096850.

[20] A. Labella, "Power Management Analysis in PV-BESS Islanded AC Microgrid," 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, March 2019, doi: 10.1109/ATEE.2019.8724945.

[21] R. K. Sharma, S. Mudaliyar, and S. Mishra, "Power Management and Economic Load Dispatch based Control of Hybrid PV-Battery-Diesel Standalone AC System," IEEE International Conference on Smart Energy Systems and Technologies (SEST), 2018, doi: 10.1109/SEST.2018.8495823.

[22] D. Pagnani, Ł. Kocewiak, J. Hjerrild, F. Blaabjerg, and C. L. Bak, "Control Principles for Island Operation and Black Start by Offshore Wind Farms Integrating Grid-Forming Converters," EPE'22 ECCE Europe, 2022, ISBN: 978-9-0758-1539-9.

[23] P. H. Prakash, J. P. Lopes, and B. Silva, "Offshore Wind Farm Black Start With Grid-Forming Control," 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), pp. 1-6, 2024, doi: 10.1109/MELECON56669.2024.10608761.

[24] Z. Zhou, et al., "Sub-Synchronous Damping by Battery Storage System in Grid-Forming Control Mode," IEEE Energy Conversion Congress and Exposition (ECCE), 2022, doi: 10.1109/ECCE50734.2022.9947758.

[25] Z. Zhou et al., "Subsynchronous Damping by Battery Storage System in Grid-Forming Control," IEEE Transactions on Power Electronics, vol. 39, no. 4, pp. 4173-4186, Apr. 2024, doi: 10.1109/TPEL.2024.3354409.

[26] C. Cardozo, T. Prevost, S.-H. Huang, J. Lu, N. Modi, M. Hishida, X. Li, A. Abdalrahman, P. Samuelsson, T. Van Cutsem, Y. Laba, Y. Lamrani, F. Colas, and X. Guillaud, "Promises and Challenges of Grid Forming: Transmission System Operator, Manufacturer and Academic Viewpoints," Electric Power Systems Research, vol. 235, 2024, doi: 10.1016/j.epsr.2024.110855.
[27] M. A. Awal, M. R. H. Bipu, S. Chen, M. Khan, W. Yu, and I. Husain, "A Grid-Forming Multi-Port Converter Using Unified Virtual Oscillator Control," IEEE Transactions on Power Electronics, vol., no., 2020, doi: 10.1109/TPEL.2020.XXXXX.

[28] J. Gouveia, C. L. Moreira, and J. A. Peças Lopes, "Influence of Load Dynamics on Converter-Dominated Isolated Power Systems," Applied Sciences, vol. 11, no. 2341, pp. 1-19, 2021, doi: 10.3390/app11052341.

Paper number #1445 Study committee: SC C6 – Active distribution systems and distributed energy resources

Preferential subject PS2

[29] M. Fusero, A. Tuckey, A. Rosini, P. Serra, R. Procopio, and A. Bonfiglio, "A Comprehensive Inverter-BESS Primary Control for AC Microgrids," Energies, vol. 12, no. 3810, pp. 1-19, 2019, doi: 10.3390/en12203810.

[30] E. Rakhshani, J. M. Ruiz, X. Benavides, and E. Dominguez, "Enhancing Low-Inertia Power Systems with Grid Forming-Based Hybrid Energy Storage Technology," 12th International Conference on Smart Grid (icSmartGrid), pp. 1-8, 2024, doi: 10.1109/icSmartGrid61824.2024.10578086.

[31] J. Gouveia, C. L. Moreira, and J. A. Peças Lopes, "Grid-Forming Inverters Sizing in Islanded Power Systems – A Stability Perspective," IEEE Transactions on Power Delivery, 2019, doi: 10.1109/TPWRD.2019.XXXXX.

[32] O. D. Garzon, A. B. Nassif, and M. Rahmatian, "Grid Forming Technologies to Improve Rate of Change in Frequency and Frequency Nadir: Analysis-Based Replicated Load Shedding Events," Electronics, vol. 13, no. 1120, 2024, doi: 10.3390/electronics13061120.

[33] R. Guo, Y. Wu, X. Ma, G. Aggidis, and N. Zhao, "Grid Integration of a Novel Linear-Generator-Based Wave Power Conversion System," International Conference on Smart Energy Systems and Technologies (SEST), 2024, doi: 10.1109/SEST61601.2024.10694151.

[34] M. Tozak, S. Taskin, I. Sengor, and B. P. Hayes, "Modeling and Control of Grid Forming Converters: A Systematic Review," IEEE Access, vol. 12, pp. 107818-107823, 2024, doi: 10.1109/ACCESS.2024.3437236.

[35] K. Senyane, J. Van Coller, and L. Masisi, "Performance Evaluation of Grid-scale Battery Energy Storage System Employing Virtual Synchronous Generator Control for Grid Code Compliance in Weak Grids," 32nd Southern African Universities Power Engineering Conference (SAUPEC), 2024, doi: 10.1109/SAUPEC60914.2024.10445060.

[36] L. Lin, X Ma, W. Ding, H. Cui, and N. Xu, "Reactive Power Optimization of Renewable Energy Base Considering Reactive Power Adjustment Capacity of Grid-forming Energy Storage Station," 6th International Conference on Renewable Energy and Power Engineering (REPE), 2023, doi: 10.1109/REPE59476.2023.10511667

[37] H.-J. Moon, J. W. Chang, S.-Y. Lee, and S.-I. Moon, "Autonomous Active Power Management in Isolated Microgrids Based on Proportional and Droop Control," Energy Procedia, vol. 153, pp. 48-55, 2018, doi: 10.1016/j.egypro.2018.10.055.

[38] F. Carnielutti, M. Aly, M. Norambuena, J. Hu, J. Guerrero, and J. Rodriguez, "A Master-Slave Model Predictive Control Approach for Microgrids," IEEE Transactions on Power Electronics, vol.. 40, no.. 1, pp.. 540-551, Jan.. 2025, doi: 10.1109/TPEL.2024.3464105.

[39] H.-J. Moon, Y. J. Kim, J. W. Chang, and S.-I. Moon, "Decentralized Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators," Energies, vol. 12, no. 511, pp. 1-22, 2019, doi: 10.3390/en12030511.

[40] S. A. G. K. Abadi and A. Bidram, "Effective Utilization of Grid-Forming Cloud Hybrid Energy Storage Systems in Islanded Clustered DC Nano-Grids for Improving Transient Voltage Quality and Battery Lifetime," IET Generation, Transmission & Distribution, vol. 17, pp. 1836-1856, 2023, doi: 10.1049/gtd2.12775.

[41] S. U. Ali, A. Waqar, M. Aamir, S. M. Qaisar, and J. Iqbal, "Model Predictive Control of Consensus-Based Energy Management System for DC Microgrid," PLoS ONE, vol. 18, no. 1, e0278110, 2023, doi: 10.1371/journal.pone.0278110.

[42] A. Zecchino, F. Gerini, Y. Zuo, R. Cherkaoui, and M. Paolone, "Local Effects of Grid-Forming Converters Providing Frequency Regulation to Bulk Power Grids," Innovative Smart Grid Technologies - Asia (ISGT Asia), 2021, doi: 10.1109/ISGTASIA49270.2021.9715628.

[43] M. M. Ertay, D. Chowdhury, M. M. Biswas, and H. L. Ginn, "Real-Time Simulations for Testing of a Low-Voltage Microgrid with MMC-DSTATCOM," 20th International Power Electronics and Motion Control Conference (PEMC), 2022, doi: 10.1109/PEMC51159.2022.9962933.

[44] F. Gerini, Y. Zuo, R. Gupta, A. Zecchino, Z. Yuan, E. Vagnoni, R. Cherkaoui, and M. Paolone, "Optimal Grid-Forming Control of Battery Energy Storage Systems Providing Multiple Services: Modeling and Experimental Validation," Electric Power Systems Research, vol. 212, 2022, doi: 10.1016/j.epsr.2022.108567.

[45] Y. Zuo, Z. Yuan, F. Sossan, A. Zecchino, R. Cherkaoui, and M. Paolone, "Performance Assessment of Grid-Forming and Grid-Following Converter-Interfaced Battery Energy Storage Systems on Frequency Regulation in Low-Inertia Power Grids," Sustainable Energy, Grids and Networks, vol. 27, 2021, doi: 10.1016/j.segan.2021.100496.

[46] J. Westman, R. Hadidi, C. Fox, and J. Leonard, "Energization of Transformers in Medium-Voltage Island Microgrids by Leveraging Grid-Forming Inverter Control," 57th IEEE Industrial and Commercial Power Systems Technical Conference (I&CPS), 2021, doi: 10.1109/ICPS51807.2021.9416595.

[47] D. Pagnani, Ł. Kocewiak, J. Hjerrild, F. Blaabjerg, and C. L. Bak, "Integrating Black Start Capabilities into Offshore Wind Farms by Grid-Forming Batteries," IET Renewable Power Generation, vol. 17, no. 14, pp. 3523-3535, 2023, doi: 10.1049/rpg2.12667.

[48] M. Shahparasti, H. Laaksonen, K. Kauhaniemi, P. Lauttamus, S. Strandberg, and J. Strandberg, "Inrush Current Management During Medium Voltage Microgrid Black Start with Battery Energy Storage System," IEEE Access, vol. 10, pp. 42287-42291, 2022, doi: 10.1109/ACCESS.2022.3167701.

[49] M. Singh, L. A. C. Lopes, and N. A. Ninad, "Grid-forming Battery Energy Storage System (BESS) for a highly unbalanced hybrid mini-grid," Electric Power Systems Research, vol. 127, pp. 126-133, 2015, doi: 10.1016/j.epsr.2015.05.013.

[50] N. A. Ninad and L. A. C. Lopes, "A BESS Control System for Reducing Fuel-Consumption and Maintenance Costs of Diesel-Hybrid Mini-Grids with High Penetration of Renewables," IEEE PES General Meeting, 2013, pp. 409-416, doi: 10.1109/PESGM.2013.123456.

[51] S. M. Hossain, S. Koley, and A. Winter, "A Technical and Economic Feasibility Study of Campus Microgrid Implementation," IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2022, doi: 10.1109/PEDG2022.9923242.

[52] D. Jolevski, D. Jakus, J. Vasilj, and J. Novaković, "Adaptation of Microinverter Reference Design for Integration with Battery Energy Storage Systems in Microgrids," Energies, vol. 17, no. 1487, pp. 1-21, 2024, doi: 10.3390/en17061487.

[53] A. Avendaño Ceceña, "Power Hardware-in-the-Loop Interfacing of Grid-Forming Inverter for Microgrid Islanding Studies," IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2023.